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Self-organized growth of composition-modulated alloys
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Epitaxial growth of semiconductor alloys in open systems can be unstable against fluctua-
tions of composition [1-41. For such kinetic instability it is typical that the bulk diffusion
is negligibly slow compared with the surface diffusion. Fluctuations of composition in
the entire thickness of the epitaxial film are "frozen", and these fluctuations create a strain
field on the surface which affects the surface migration of atoms. It was shown in [41,
that due to the interplay of anisotropic elasticity and anisotropic surface diffusion, the
wave vector of the most unstable mode of composition fluctuations can have any direction.
However, an important question was still unsolved: How does this interplay depend on key
experimental parameters, namely on growth temperature and growth velocity? Moreover,
the linear stability analysis of alloy growth [1-41 does not give an answer on the final
composition-modulated structure which is being formed during the growth.

In the present paper we, first, perform a linear stability analysis and obtain the wave
vector of the most unstable mode as a function of growth temperature and growth velocity.
Second, we solve a non-linear problem in the weak segregation regime and obtain a final
composition-modulated structure.

We study the growth of a binary alloy At_,B, via molecular beam epitaxy at growth
temperature above the roughening transition temperature. Then the surface contains a high
concentration of steps and kinks. Crystal growth can be described by the propagation of the
surface in the normal direction. The growth of an alloy implies coupled fluctuations of alloy
composition 0 (rl, z) = c(r1 , z) - 7T and surface profile ( (r11) = h(r1j) - h, where h(r11 )
is the local thickness of the film, and h is the average thickness. Let the alloy A1 -_B, be
a mixture of two cubic crystals, the homogeneous alloy be lattice-matched to the substrate
and the growth occur on the (001)-substrate of a cubic material. The growth of an alloy is
described by two coupled kinetic equations. Let the reference frame travel together with
the surface with the average growth velocity v. Then kinetic equations are as follows:

Di(r1 ) _ Vj F - v- (rh)

at 60(rll, h) a

0•'rll -MVi Vj - (Fat =(rV ) (1)

Here Mý and M5. are 2D surface atomic mobility tensors related to the substitutional
diffusion and to the change of surface profile, respectively. Unlike [3 1, Eqs.(l) account the
anisotropy of surface mobility tensors, their principle axes being [ 1101 and [ 1 101, which is
typical for III-V and 1I-VI semiconductors; a is the lattice parameter. The free energy F
equals Fchem + Fgrad + Esurf + Eel, where Fchem is the chemical free energy, Fgrad is the
gradient energy, Esurf is the surface energy of a corrugated surface, and Eel is the elastic
energy depending on the surface profile.

First, we carry out the linear stability analysis by expanding F up to 02 and (2. We
seek Fourier components of fluctuations O(k1 l, t) and ( (kl, t) proportional to exp[w (k1 l)tI.
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Fig. 1. The phase diagram of kinetic instability in variables "temperature-growth velocity".
(a) The boundary of the instability region. For v = v0 the alloy is unstable at T2 < T < T1. (b) I:
stable alloys, II: unstable alloys, most unstable modes are shown in Fig. 1 (c) (bottom). III: unstable
alloys, most unstable modes are shown in Fig. 1 (c) (top). (c) Wave vectors of most unstable modes.

Linearized equations for 4 (kl, t) and ý (kl, t) are decoupled, similar to [2,3 1. For fluc-

tuations of composition, 4(k11 , t) - exp[wo(k 1 1)tj, we obtain the following characteristic
equation for w:

o=-M(O)k 2 r(T - To) + Kk2 + 3 -kR-(0) R ,(0) v/a. (2)

[ L)7 kk,(O) + w/v adO

0 is the angle between kj1 and [ 1001; Rs (0) refer to the anisotropic elastic interaction [ 1];
as (0) are attenuation coefficients of static Rayleigh waves; M(0) is the effective mobility

in the given direction, M(0) = M¢ cos2 (0 -0r/4) + M2 sin 2 (0 -0r/4), where M0 and M2

are mobilities along [ 1101 and [1101, T, is the critical temperature of kinetic instability in
the slow deposition limit (v -- 0) [11; r = (a3 fcheo,/aC2 rT), where fchem is the chemical
free energy density; K refers to the gradient energy. Given v and T, Eq.(2) determines
wo(k, 0). Rew > 0 means the kinetic instability.

To obtain the stability phase diagram of the alloy growth (Fig. 1 (b)) we set FT = 0.5, use
for .,fheo, the regular solution approximation, fchem (c, T) = Qc(1 - c) + T[(1 - c) ln(1 -
c) + c In c], and take into account the Arrhenius-type temperature dependence of mobilities

M 1,2 (T) = Mw),2 exp(--E1 ,2/T). The growth of an alloy includes the competition between
the surface migration and the burial by the incoming flux. Let temperature T be fixed. Then,
if the growth velocity v is larger than a certain critical value, the fast burial does not allow the
surface migration to create composition fluctuations. Now, let v be fixed and T decrease.
When T < T1 (v), the driving force to kinetic instability appears. When T < T2(v) the
slow surface diffusion does not allow composition fluctuations to occur (Fig. 1 (a)).

Anisotropic surface diffusion promotes instability with kj1 along the direction of fast
diffusion [1101. Anisotropic elasticity promotes instability with k1l along the elastically
soft direction [1001 or [0101. The result of such an interplay is given in Fig. 1 (b). In region
II there are 2 most unstable modes with k1l 11 [ 1101. In region III there are 4 most unstable
modes with k1l deviated by ±60 from [1101 (Fig. 1(c)).

Below we seek steady state solutions in the weak segregation regime, i.e. at T and v
close to the onset of the instability. For simplicity we consider isotropic surface diffusion.
Near the onset of instability we have (VK)/[aMr(T. - T)j = 1/4 - E2, where E << 1.
The fact that in the linear regime, kinetic equations for 0 and for ( are decoupled and the
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surface remains flat, has two important issues. First, 2 2. Then, to solve the non-linear
problem we expand the free energy up to fourth order terms, i.e. up to 04 and -2. Second,
the relaxation of the surface is a fast process, while the relaxation of the composition
profile is a slow process. By using the adiabatic elimination of fast relaxing variables [5j
we obtain kinetic equations which contain only 0. In the weak segregation regime the
solution is a perturbation series in E. The main contribution is given by most unstable
modes with k1l = ±(ko, 0) and kj1 = ±(0, ko), where ko = (1/V'2)[r(T. - T)/K 11/2. We

seek 0 in the form 0 (x, y) = E[(r 4 /r(T. - T)j1 /2 [LVf cos(kox) + Vjy cos(koy)1, where
r4 = (a4 fche,./ C4)=c. Kinetic equations for amplitudes Vfr and Vfy are

Vi, f - Vf, + aL 3o + arTVJVj
Difr 2 21f

-- Vy +aLVJ 3 +aTIJy1 , (3)

where

(r (T, T)) 1/2K 1/2 2
aL = I+ K RL _ R

yr4 8 2r(T, - T)

aT =- 3+ (r(T, - T)) 1/ 2 1 /2 2 RT - 4R2 T) (4)

yr4 [ r(T, - T) IJ

T = (Mr(T. - T)/K)t is a dimensionless time parameter, and y is the surface energy
per unit area, RL and R7 are characteristic elastic energies. The steady state solution of
Eqs.(3) depends on parameters aL and aT. If aL < aT, the stable steady state solution

is a ID composition-modulated structure, Vf, = aL1/2 and Vjy = 0 or Vfy = aL1/2

and Vf, = 0. If aL > aT, the stable steady state solution is a 2D modulated structure,
Vfr = Vjy = (aL + aT)-1/ 2 . If aL + aT < 0 or aL < 0, Eqs.(3) do not have stable steady
state solutions. This means that the final structure has a finite modulation amplitude already
near the onset of instability.

The pattern selection is governed by the interplay of elastic and surface energies. Let
the surface energy be very high, y -- oc. Then the surface remains flat even in the
non-linear regime; aL = 1, a7, = 3, which favors a ID structure. There is a similarity
with alloy decomposition in the bulk [61, where the resulting structure is a mixture of two
phases with compositions cl and c2. A two-phase system is consistent with ID structure
and inconsistent with 2D structure. For a moderate y, the effect of surface corrugation
becomes important, which alters aL and aT and favors 2D structure. This is similar to the
case of lattice-mismatched systems where a 2D corrugation gives a more efficient elastic
relaxation than a ID one [71. For a low surface energy, aL < 0, aT < 0, and the final
structure has a finite amplitude near the onset of instability. Since the interplay of elastic and
surface energies depends on T, - T (Eq.(4)), this yields a phase diagram on Fig. 2. Similar
interplay between ID and 2D structures persists in case of anisotropic surface mobility.

To conclude, we have shown that the alloy growth in open systems can result in both ID
and 2D modulated structure and the orientation of the structure is determined by growth
temperature and growth velocity. Principle results, obtained for binary alloys, remain valid
for ternary and quaternary alloys. This explains the ID structure in InA1As modulated in
[ 110]-direction [8], the ID structure in MgZnSSe modulated in [ 100 -direction [9 1, and the
2D structure in GaInAsP modulated in [1001 and [010J-directions [101.
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Fig. 2. The phase diagram of final composition-modulated structure near the onset of instability.
I: 1D structure, II: 2D structure, III: no solutions in the weak segregation regime, the structure has
a finite amplitude.
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